Theoretical study of the absorption and nonradiative deactivation of 1-nitronaphthalene in the low-lying singlet and triplet excited states including methanol and ethanol solvent effects.

نویسندگان

  • Yoelvis Orozco-Gonzalez
  • Kaline Coutinho
  • Jorge Peon
  • Sylvio Canuto
چکیده

The photophysics of the 1-nitronaphthalene molecular system, after the absorption transition to the first singlet excited state, is theoretically studied for investigating the ultrafast multiplicity change to the triplet manifold. The consecutive transient absorption spectra experimentally observed in this molecular system are also studied. To identify the electronic states involved in the nonradiative decay, the minimum energy path of the first singlet excited state is obtained using the complete active space self-consistent field//configurational second-order perturbation approach. A near degeneracy region was found between the first singlet and the second triplet excited states with large spin-orbit coupling between them. The intersystem crossing rate was also evaluated. To support the proposed deactivation model the transient absorption spectra observed in the experiments were also considered. For this, computer simulations using sequential quantum mechanic-molecular mechanic methodology was used to consider the solvent effect in the ground and excited states for proper comparison with the experimental results. The absorption transitions from the second triplet excited state in the relaxed geometry permit to describe the transient absorption band experimentally observed around 200 fs after the absorption transition. This indicates that the T(2) electronic state is populated through the intersystem crossing presented here. The two transient absorption bands experimentally observed between 2 and 45 ps after the absorption transition are described here as the T(1)→T(3) and T(1)→T(5) transitions, supporting that the intermediate triplet state (T(2)) decays by internal conversion to T(1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast Luminescence Decay in Rhenium(I) Complexes with Imidazo[4,5-f]-1,10-Phenanthroline Ligands: TDDFT Method

The interpretation of the ultrafast luminescence decay in [Re(Br(CO)3(N^N)] complexes as a new group of chromophoric imidazo[4,5-f]-1,10-phenanthroline ligands, including 1,2-dimethoxy benzene, tert-butyl benzene (L4) and 1,2,3-trimethoxy benzene, tert-butyl benzene (L6), was studied. Fac-[Re(Br(CO)3L4 and L6] with different aryl groups were calculated in singlet and triplet excited states. The...

متن کامل

Electronic effects on singlet-triplet energy splittings in aryl-cyclopentadienylidenes

Energy gaps, AXsar (X=E, H and G) (AX.,.,-=lia,„,,,InrX“dpka,) between single (s) and triplet (I) states werecalculated at B3LTP/6-3 I 1.HO" level of theory. Our results showed that electron donating substituents(G = -NHz, -OH. -CH), -F, -Cl and -Br) at phenyl group cause to increase and electron withdrawingsubstiluents (G -CF2. and -NO:) lead to decrease the singlet-triplet energy gaps of Ar -...

متن کامل

Electronic effects at 2 and 7 α–position of divalent unsaturated seven membered ring R2C6H6M (M=C, Si, Ge, Sn, Pb)

Electronic effects were investigated on the singlet–triplet energy gaps of divalent unsaturated seven- membered ring R2C6H6M (M=C, Si, Ge, Sn, Pb, R= –H, -CH3, i-Pr , t-Bu) at B3LYP/6-311++G** level. All the triplet states of R2C6H6C were more stable than the related the singlet states while all the singlet states of R2C6H6M (M= Si, Ge, Sn, Pb, R= –H, -CH3, i-Pr , t-Bu) were more stable than th...

متن کامل

Steric effects on the Singlet–Triplet Energy Gaps of Seven Membered Ring silylenes, R2C6H6Si

With the aim of recognizing the steric effects on the silylenic R2C6H6Si structures, DFT calculationsare carried out on 8 structures of R2C6H6Si (where R is hydrogen (H), methyl (Me), isopropyl (i-pro),and tert-butyl (tert-Bu)). These species are at either triplet (t) or singlet (s) states. Singlet–tripletenergy separations ( Me (20.32) > t-Bu (15.92).all singlet states of R2C6H6Si, are more st...

متن کامل

SAC-CI theoretical study on the excited states of lumiflavin: Structure, excitation spectrum, and solvation effect

The excited states of a flavin-related compound, lumiflavin, were studied by the symmetry-adapted cluster (SAC)-configuration interaction (CI) ethod. The absorption peaks observed in the experimental spectrum were theoretically assigned. Transition energy of some low-lying n– * states ere obtained. The energy minimum structures of the first singlet and triplet excited states were calculated by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 137 5  شماره 

صفحات  -

تاریخ انتشار 2012